3. Scientific Visualization on Sparse Grids
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The ever growing size of data sets resulting from industrial and scientific sim-
ulations and measurements have created an enormous need for analysis tools
allowing interactive visualization. Although processing speed and graphics
hardware support is improving dramatically, additional algorithmic innova-
tions are necessary in order to yield the overall performance improvements
end users are demanding. To cope with such large data sets, hierarchical data
structures and adaptive methods like wavelets or multilevel finite-elements
have been successfully used in simulation and visualization [3.10]. Another
promising hierarchical approach in the area of numerical simulation is called
sparse grids. Since this method is attracting more and more interest in the
scientific community, we decided to investigate the properties of sparse grids
for visualization purposes.

The first contribution of this paper is to present two major visualization
algorithms working directly on the sparse grid representation of the data
set. One of them is interactive particle tracing, which continues to be an
important utility for evaluating CFD simulations. The other one is volume
ray casting, which is of interest in many areas dealing with three-dimensional
scalar data. The second aspect of our work is the idea that sparse grids can
be used for data compression in order to visualize huge regular data sets even
on workstations with a limited amount of main memory. Moreover, using the
combination technique, which is a special variant of the sparse grid approach,
it is possible to decompose a sparse grid into a certain number of uniform full
grids of low resolution. Because of this fact, texture hardware support can
be deployed for the necessary function interpolation. Hence, we are able to
perform volume visualization methods on compressed data sets at interactive
frame rates, which is not possible with other methods like wavelets or fractal
compression. In particular, we are able to handle sparse grids of level 13,
which correspond to regular volumes of 81932 voxels.

3.1 Introduction

The sparse grid idea was developed in the 1960s by Babenko [3.1] and
Smolyak [3.25]. They showed that a special tensor product technique of con-
structing higher dimensional quadrature formulas and approximation oper-
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ators from corresponding one-dimensional objects leads to almost optimal
error rates. In 1990 sparse grids were introduced to the field of numerical
computation by Zenger [3.32]. By means of sparse grids, it is possible to re-
duce the total amount of data points or the number of unknowns in discrete
partial differential equations. Due to these benefits, sparse grids are more and
more used in numerical simulations [3.2, 3.3, 3.11, 3.12].

On the other hand, it is rather difficult to visualize the results of the sim-
ulation process directly on sparse grids, since evaluation and interpolation of
function values is quite complicated. Because of this, the results of numeri-
cal simulations on sparse grids are usually interpolated to the associated full
grid. Thereafter, all well known visualization algorithms working on regular
grids can be used, e.g. particle tracing, iso-surface extraction, and volume
rendering. However, a major drawback of this procedure is the fact that the
advantage of low memory consumption of sparse grids comes to nothing using
the associated full grid for the visualization step.

Therefore, visualization tools working directly on sparse grids are an im-
portant topic of research. Recently, Heufler and Rumpf presented an algo-
rithm for iso-surface extraction on sparse grids [3.15]. In a previous work, we
introduced particle tracing on uniform sparse grids [3.28].

The goal of this paper is to give insight into both the difficulties and
chances of the sparse grid technique and to present an overview over an
important facet of the wide field of hierarchical methods for visualization
purposes. The paper is organized as follows. In Sect. 3.2 we give a brief intro-
duction to the underlying mathematics. The subsections discuss the sparse
grid approach, the idea of adaptive grid traversal, and the combination tech-
nique. Section 3.3 is dedicated to particle tracing. The first four subsections
describe the implementation of uniform sparse grids, adaptive sparse grids,
the combination technique, and curvilinear sparse grids, respectively. Two
further subsections present the integration of the particle tracer into the
IRIS Explorer visualization environment and give some examples and per-
formance results. Section 3.4 introduces volume ray casting on sparse grids.
The subsections elaborate the software based interpolation routines and the
hardware accelerated interpolation making use of the graphics texture sub-
system. These subsections also describe the integration of these methods into
our object-oriented volume visualization environment and give again some
examples and results. We conclude the paper with a short summary and
some ideas for future work.

3.2 Mathematical Foundations
In this section a brief summary of the basic ideas of sparse grids is given.

For a detailed survey of sparse grids we refer to [3.2, 3.32]. In order to make
this overview easier to understand and to reduce the number of indices, we
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describe only three-dimensional grids, whereas the sketches always reveal the
two-dimensional situation.

3.2.1 Sparse Grids

Let f : [0,1]> — R be a smooth function defined on the unit cube in R? with
values in R. Furthermore, f should vanish on the boundary of the cube!. If
such a function f is used in a numerical computation it has to be discretized,
which means that only function values at certain positions of a spatial grid
are stored. The simplest of these grid structures is a uniform mesh, which
can be represented as a three-dimensional array.

Now let G, i, ,i; be a uniform grid with respective mesh widths h;, = RC
j =1,2,3. On these grids we can introduce the following partial ordering rela-
tion: G, i, i, is & refinement of G, i, k, if and only if k; <4;, j =1,2,3 and
k1 +Ak2 + k3 < i1 4142 +i3. Thus we obtain a hierarchy of meshes. Furthermore
let L, be the function space of the piecewise tri-linear functions defined on
Gp,n,n and vanishing on the boundary. Additionally, consider the subspaces
Si1 io,ig Of L, with 1 <i4; <n,j=1,2,3, which consist of the piecewise
tri-linear functions defined on Gj;, i,,i; and vanishing on the grid points of
all coarser grids. Apparently, the hierarchy of grids naturally introduces a
hierarchy of subspaces and it follows that

n n n
L, = @ @ @ Sivjizsis - (31)
i1=1 ip=1iz=1
Hence, we have found a hierarchical basis decomposition of the function space
L,, where piecewise tri-linear finite elements are used as basis functions in
each subspace S;, ,i,,i;- These basis functions are defined as follows (compare
Fig. 3.1):

3
b (@1, @2, 3) o= [ wi, (2 - mi?) (3:2)
j=1
hite . —h; <2 <0
and wi(z):=< B2 . 0<z <My
0 : else

Since we are interested in estimations of the interpolation error, we look at
fn € Ly, the interpolated function on the grid G, ... ,, which is given by

! This condition is not a strong restriction but it is just helpful for an elegant
description. Of course, our algorithms can handle three-dimensional functions
and even vector fields without zero boundary conditions.
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Fig. 3.1. Examples of basis functions, bgl) and bﬁ” on the left and bgf) and bgff)
on the right hand side.
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The values c,(fll,’,zj”?s) are called contribution coefficients and f;; iy.is € Siy is,is
is a linear combination of the basis functions of the appropriate subspace. It
can be shown that the following estimations hold with regard to the L? or
L norms (compare [3.2, pp. 13]):
o f

25252
0x{0x50x3

<0 (hy). (3.6)

-h? h3h2 (3.5)

13

|| firin,is || < comst - H

Hf - fn
So far we have just dealt with regular uniform meshes, which are named full
grids. Now let us turn to sparse grids. Consider the subspaces S;, i,,i; With
i1 + @2 + i3 = const. Equation (3.5) shows that || f, i,,is|| has a contribution
of the same order of magnitude, namely O(2~2°°"t) for all subspaces with
i1 + i3 + i3 = const. Additionally, these subspaces have the same number
of basis functions, namely 2°°*%*=3, Since the number of basis functions is
equivalent to the number of stored grid points and because of the contribution
argument as well, it seems to be a good idea to define a sparse grid space Ly,
as follows (compare also Fig. 3.2):

i/n = @ S’ihiz,ia' (37)

i1+i2+iz<n+2

Now the interpolated function f,, € L, is given by
fn= Z fihiz,is (3-8)
i1+i2+iz<n+2

and the interpolation error with regard to the L? or L>™ norm is given by
(compare [3.2, pp. 23])

|7 - ]| < 0 (12 (1082 (n1))") - (3.9)
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Fig. 3.2. A two-dimensional hierarchical subspace decomposition is shown on the
left hand side, the respective sparse grid is sketched on the right hand side.

This estimation shows that the sparse grid interpolated function fn is nearly
as good as the full grid interpolated function f, (compare Eq. (3.6) with
Eq. (3.9)). X ~

Now we consider the dimensions of the function spaces L,, and L,,, which
correspond to the number of nodes of the underlying grids. Obviously, the
dimension of the full grid space is given by

dim (Ln) = 0 (2*) = O (h7?). (3.10)
For the sparse grid the following relation holds:
dim (ﬂn) =0(2"-n*) =0 (h;l (log, (h;l))2) . (3.11)

Therefore, a tremendous amount of memory can be saved if sparse grids are
used instead of full grids.

If the function f is given and a certain accuracy is required, then it is
possible to use f, € Ly, or fp, € Ly, where m is just slightly greater than n.
Due to the very low memory consumption of sparse grids, it is better to use
the function f,,,. On the other hand the function f is often given in discrete
form as data set on a full grid. In this case it is not possible to reach a better
accuracy with the sparse grid approach than with the original full grid data.
However, Egs. (3.10) and (3.11) show that a very small loss of accuracy is
rewarded with a huge amount of saved storage.

Table 3.1 demonstrates this benefit listing the memory consumption for
various grid levels on the assumption that scalar single precision floating
point values are given at each grid node. Obviously, sparse grids are also very
suitable for compressing huge regular data sets. This opens up the potential to
visualize them even on workstations with a limited amount of main memory.

Finally, recalling that the sparse grid space L, is the direct sum of all
subspaces S; jr with i + j + k < n + 2, we define the level of a subspace as
the number n = i + j + k — 2 and the level of the sparse grid space as the
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Table 3.1. Memory consumption of sparse grids

level 6 7 8 9 10 11

# of full grid points  65° 129 257° 513% 1025% 20493
full grid 1MB 8MB 64MB 512MB 4GB  32GB
sparse grid 15kB 35kB 83kB 200kB 450kB 1 MB

direct sum of all subspaces of the same level of subspaces. Hence, L, is the
direct sum of its first n levels and is called a sparse grid of level n.

3.2.2 Adaptive Evaluation of Sparse Grids

In order to improve on the rather time consuming standard sparse grid inter-
polation as described above, an adaptive approach for the function evaluation
is presented in this subsection.

First of all, it is important to distinguish between actual adaptive sparse
grids and an adaptive way of function evaluation, i.e. an adaptive traver-
sal of ordinary sparse grids. Adaptive sparse grids were introduced to the
field of numerical simulations by Bungartz [3.2] in 1992. Roughly spoken,
the idea of adaptive sparse grids is to store contribution values only if their
norm is greater than a given error criterion. The resulting memory savings
are invested in calculating a further level of the numerical sparse grid simu-
lation. In [3.2] it was shown that adaptive sparse grids lead to slightly better
numerical results than plain sparse grids.

However, in our situation an upper bound of the accuracy is given by the
input data. Thus, we do not need adaptive sparse grids to improve accuracy.
On the other hand, using sparse grids instead of full grids results in such
a great advantage of memory saving that the benefit of employing adaptive
sparse grids instead of plain sparse grids is negligible. Therefore, it is not too
useful to implement adaptive sparse grids for visualization purposes. However,
we are of course able to visualize data sets given on adaptive sparse grids by
inflating the adaptive sparse grid to the corresponding standard sparse grid
by adding contribution coefficients with zero values.

Since our goal is to decrease the computing time of the sparse grid inter-
polation, we introduce an adaptive traversal of the standard sparse grid in
order to compute function values. Again the idea is to omit contribution co-
efficients with a norm below a given error criterion during the interpolation
process. Going into the details, we have to distinguish between adaptivity
with regard to the L? and the L> norm. Although they generate the same
sparse grid, these norms lead to slightly different adaptive approaches.

Analyzing the situation with respect to the L> norm, we find that the
contribution of one basis element of subspace S, i,,i; to the function value
is given by (compare Eq. (3.4))
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(i1,82,i3) (1171'2,1'3) (i1,%2,13) (117i23i3) (i1,%2,i3)
Hckl,kz,ks krkaks || = |Chrkako | *||Pkisbarks || = |Chrbasks | (312)
and the maximum contrlbutlon of subspace S;, is,is is
max |clV2) | with 1<k; <261 (3.13)
k1,k2,ks 1R2,%8

For vector fields the absolute value | - | has to be replaced by an appropriate
norm of the Euclidean space R™ and we apply the maximum norm of R™
in order to ensure maximum accuracy for all components of the vector field.

The actual concept of the adaptive grid traversal is that basis functions,
which have contribution coefficients with an absolute value below a given
error bound, are left out during the interpolation process. This results in a
function evaluation that considers the local structure of the data set. That is,
regions with a high variation in data values and, therefore, large contribution
coefficients primarily contribute to the result, whereas coefficients of smooth
regions are likely to be omitted.

As a second modification of the plain sparse grid algorithm, we have
integrated a preprocessing step, which computes and stores the maximum
contribution of each subspace (see Eq. (3.13)). This preprocessing step is
performed during the conversion of a full grid to the appropriate sparse grid.
This kind of adaptive grid traversal leads to a function evaluation with di-
rection dependent accuracy, because different subspaces of the same level
exhibit different resolutions in the three coordinate directions (reconsider the
hierarchical subspace decomposition on the left hand side of Fig. 3.2).

Now let us discuss the adaptive approach based on the L? norm. A
straightforward calculation shows that the contribution of one basis element
of subspace S;, 4,,i; to the function value is given by

(41,42,13)

(i1,92,83) 7 (i1,d2,83) || _ (41,42,43)
‘ k1,k2,ks "~ Vki,ko,ks o | k1sk2.ks | Pk k2 ks (3'14)
_ | (d1,d2,i3) i14iatiz—1)—3
- ‘%,kz,ks (3 2intia+ia—1)3 (3.15)

Since i1 +is+1i3—1 = n+1 with n denoting the current level, the square-root
term only depends on the level and is, therefore, constant for all subspaces of
the same level. Hence, this term is also a factor of the maximum contribution
of the corresponding subspaces.

In contrast to the L> norm, the L? norm generates an adaption strategy
that considers not only the absolute value but also the level of a contribution
coefficient. Contribution coefficients of higher levels are more likely to be
omitted than coefficients of lower levels. Later on in Subsect. 3.3.6, we are
going to see that the different properties of these adaptive grid traversals
yield different results.

3.2.3 The Combination Technique

Since both the standard and the adaptive sparse grid interpolation of func-
tion values are quite complicated and rather time consuming, we have also
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Fig. 3.3. A two-dimensional sparse grid of level 3 can be reconstructed by linear
combination of five full grids of low resolution.

implemented the so-called combination technique, which was introduced by
Griebel, Schneider, and Zenger in 1992 [3.12]. Actually, the combination
method has been used in numerical simulations in order to combine par-
tial solutions computed on smaller, suitable full grids to the desired sparse
grid solution. However, we start with a data set given on a sparse grid and
decompose the grid such that the data set is represented on certain uniform
full grids of low resolution. Now the fast and simple tri-linear interpolation
can be performed on each of these full grids. The resulting value is computed
by linear combination of the tri-linear interpolated full grid results.

Specifically, it can be proven that the three-dimensional interpolated func-
tion f,, € L, is given by

Fo_ c
D DR
t1+i2+iz=n+2
c
- 2 §: i1,12,i3
i1+i2+iz=n+1

+ D s (3.16)

i1+i2+iz=n
where f7, ; . denotes the tri-linear interpolation of function values on the re-
spective full grid. Figure 3.3 reveals the two-dimensional situation, which also
shows that the used full grids consist of the same nodes as the corresponding

sparse grid.
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Investigating the benefits of the combination technique, we find that the
total number of summands of the standard sparse grid interpolation on a
three-dimensional sparse grid of level n is given by

gj CrD Lt ) (317)

(compare Eq. (3.8)), whereas the total number of tri-linear interpolations of
the combination method adds up to

> i(i ;r D _ gn(n —1)+1 (3.18)

i=n—2

in the three-dimensional case (see Eq. (3.16)). That is, the number of tri-
linear interpolations of the combination method is one order of magnitude
lower than the number of summands of the standard interpolation.

However, the combination method outperforms the standard method in
terms of basic arithmetical operations only for levels above 50, for which
computers will not have enough main memory presumably for the next few
decades. Despite this, the main advantage of the combination technique is the
fact that uniform full grids are used. Thus, it is possible to implement the
interpolation routine in terms of tight for-loops (see Sect. 3.3.3), which makes
the combination technique an order of magnitude faster than the standard
approach even for the lower levels. Additionally, it is possible to exploit the
texture hardware support of graphics workstations for the interpolation of
function values (see Sect. 3.4.2).

Finally, we have to comment on memory consumption of the combination
method. Since here some points of the actual sparse grid are stored several
times, the memory consumption of the combination method is about four to
five times higher than the one of the standard sparse grid method. However,
compared to full grids the required storage is still negligible.

3.3 Particle Tracing

Flow visualization tools based upon particle methods continue to be an im-
portant topic of research. Lagrange visualization techniques of vector fields
are based upon the numerical solution of an initial value problem for the
following ordinary differential equation:

@, al)=m (319)

where v denotes the velocity vector field, x the position, ¢ the time variable
and x( the start value at the initial time ¢,.

Usually, a numerical integration method is used to obtain a solution. All
such methods have in common that they have to evaluate the vector field
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v at certain positions, which are in general not at grid points. Therefore,
the value of v at such a position has to be interpolated. As mentioned in
Subsect. 3.2.1, the interpolation on sparse grids is different from the one on
full grids, whereas most other parts of the particle tracing algorithm can
remain unchanged. Further exceptions are the routines required for handling
curvilinear grids (see Subsect. 3.3.4).

Our particle tracing module implements the same features, e.g. colored
streak lines, ribbons, tubes, balls, and tetrahedra (see Fig. 3.8), as our pre-
vious full grid particle tracing tool, which is partially described in [3.13] and
[3.14]. For comparison, we have implemented several interpolation techniques
using sparse grids, which are described below.

3.3.1 Uniform Sparse Grids

In contrast to tri-linear full grid interpolation, sparse grid interpolation does
not operate locally, because one basis function in each subspace contributes
to the function value. Since the tri-linear interpolation is one of the most time
consuming operations during the particle tracing process on full grids [3.16],
the complicated sparse grid interpolation is even more time consuming.
Therefore, it is important to perform the interpolation as fast as possible.
The contribution coefficients of the sparse grid are usually stored in a
binary tree [3.2, 3.3, 3.15]. In this case, a rather slow recursive tree traversal is
necessary for the interpolation of function values. Although caching strategies
can increase the efficiency of the traversal [3.15], the computation remains
rather time consuming. In order to avoid the tree traversal and to accelerate
the access to the contribution coefficients, we have developed a new, very
efficient data structure based upon arrays, which can be accessed directly.
These data structures and the associated access methods are implemented
by means of a particular C++ class hierarchy. Besides abstract base classes,
classes for input, and other auxiliary classes, the classes of interest are named
hbSparseGrid, hbLevel, and hbSubspace following the terminology intro-
duced at the end of Subsect. 3.2.1 . The class hbSparseGrid contains a
stack of n levels of class hbLevel. Furthermore, hbLevel comprises the re-
spective number of subspaces ((n + 1)n/2), denoted hbSubspace. The class
hbSubspace contains an array of the size 2" ~! times the data dimension, hold-
ing the contribution coefficients. The function value at an arbitrary position is
computed according to Eq. (3.8) by invoking hbSparseGrid: :calcValue().
This method sends a calcValue() to each hbLevel to accumulate the contri-
butions to the resulting value. The method hbLevel: :calcValue(...) per-
forms a loop over all subspaces of the current level. In this loop, the required
basis function is determined from the coordinates of the current position.
Recalling that only one basis function per subspace is unequal to zero at a
certain position because all basis functions are hat-functions with disjunct
supports, we can easily determine the required contribution value. Now the
‘height’ over the current position in the tri-linear hat-function is computed
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and multiplied by the contribution value. Thus, we obtain the total contri-
bution of this subspace to the function value. Additionally, we compute the
Jacobian in this loop by looking up the correct ‘height’ of the derivative
of the hat-function, which is a simple box-function. The Jacobian is needed
to determine the local rotation of the flow for displaying stream bands and
stream tetrahedra.

3.3.2 Adaptive Grid Traversal

In order to perform an adaptive grid traversal as described in Subsect. 3.2.2,
the method hbLevel::calcValue(...) had to be enhanced in such a way
that contribution values smaller than a given error bound are omitted in the
function value interpolation process. In addition, the method hbSubspace: :
setCoeff (...) has been modified. This method is called in the preprocessing
step when the actual sparse grid is created. During this process the contri-
bution coeflicients are computed from an analytic function or a full grid data
set, or they are read directly from a sparse grid data set. Since we often deal
with vector fields, each basis function does not only contain a single contri-
bution coefficient but an array of coefficients. For the purpose of adaptive
function evaluation, the mentioned array has been extended by one com-
ponent in order to store the maximum absolute value of the contribution
coefficients. Moreover, a variable, named maxCoeff, has been added to the
class hbSubspace for storing the maximum contribution coefficient of the
entire subspace. Of course, all these additional variables storing maximum
contribution coefficients are initialized during the creation of the sparse grid.

Keeping in mind that the maximum contribution coefficients are the ones
according to the L* norm, which means that the error criterion has to be
modified, if the L? norm is used (compare Subsect. 3.2.2), the pseudo code
of hbLevel: :calcValue(...) can be sketched as follows:

In this pseudo code, the variable mazCoeffBasis stands for the maximum absolute value of the
contribution coefficients of the possibly vector valued basis function. The variable maxzCoeff
contains the maximum contribution coefficient of each subspace.

hbLevel::calcValue(...) Calculate values at a given position by sparse grid interpolation

if (L2 norm)
n := currentLevel

e := errorCriterion -4/ (3 - 2n+1)3
else
e := errorCriterion

for (all subspaces)
if (maxCoeff > ¢)
choose appropriate basis function
if (maxCoeffBasis > ¢)
contribute to interpolation
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3.3.3 Combination Technique

Equation (3.16) determines the interpolation process for the combination
technique, which combines full grids of low resolution to a resulting sparse
grid. Since these full grids are uniform grids, the function values can be stored
in three-dimensional arrays and derived by tri-linear interpolation. Thus, the
calcValue(...) method of the appropriately derived class hbCombination-
SparseGrid can address the necessary function values in a tight loop. This
fact makes the combination technique an order of magnitude faster than the
previously described sparse grid interpolation even for low levels.

The combination technique can be accelerated by using the texture hard-
ware of modern graphics subsystems. However, this method can only be used
efficiently for volume visualization and not for particle tracing. The reason
is, that for particle tracing only a single function value has to be interpolated
at a given time step, whereas an entire plane of values is required for volume
rendering. Subsection 3.4.2 gives a detailed description of employing texture
hardware.

3.3.4 Curvilinear Sparse Grids

The underlying concept of curvilinear sparse grids is the same as for curvi-
linear full grids. In the case of uniform full grids, only the function values are
stored in an array, whereas in case of curvilinear grids, the function values
and the coordinates of the grid points as well are saved. If a curvilinear sparse
grid is considered, the contribution coefficients of the coordinates of the grid
points are stored as additional components of the basis functions. For the
combination technique, the coordinates of the grid points are stored in the
arrays of the small full grids accordingly.

The coordinates given on grid points of the sparse grid can be interpreted
as a discrete version of the coordinate function ¢, which relates points of the
computational space (C-space) to points in the physical space (P-space) (see
Fig. 3.4).

Particle tracing in arbitrary non-uniform grids requires the so-called point
location to be performed for each integration step, in order to find the cell
containing the actual particle position. Only then the velocity at that posi-
tion can be accurately interpolated from the values at the cell vertices. For
the case of curvilinear grids, particle tracing algorithms can be divided into
P-space and C-space methods. A C-space algorithm calculates the particle
path in computational space where point location is as simple as for uniform
grids. However, tri-interpolation in C-space requires the P-velocities at the
vertices to be transformed into C-space by means of the Jacobian and the
back-transformation of the path positions into P-space for visualization. In
contrast, a P-space method computes the particle trace directly in the phys-
ical domain, which saves the transformations but leads to a more complex
point location and interpolation. Sadarjoen et al. [3.22] showed that P-space
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Fig. 3.4. Relationship between computational and physical space.

algorithms are in general preferable to C-space methods. Hence, we have im-
plemented a P-space algorithm appropriately adapted for sparse grids. Work-
ing directly in P-space, the stencil walk algorithm introduced by Buning [3.4]
is usually used for the point location:

function stencilWalk Modified stencil walk algorithm
for point location on curvilinear sparse grids
in: r: Given point in P-space
e: Error bound of stencil walk
out: [ Corresponding point in C-space
r. :=(0.5,0.5,0.5) choose arbitrary start point r. in C-space (see text)
while (not done)
rp = @ (re) transform r. into P-space (see text)
Ay,:=7r—71, compute difference
if (A, <¢)
done break while-loop
else
A, = JacmH()|r, - Ap transform A, into C-space (see text)
Te =7Tc+ A. compute new position in C-space

First of all, we initialize the desired C-space position r. by starting in the
center of our volume in C-space. In order to improve this guess, the C-space
position is transformed into P-space. This is done by a sparse grid interpola-
tion using either plain sparse grids, adaptive sparse grids, or the combination
technique. If the difference of the transformed guess and the current posi-
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tion in P-space is small enough, we accept the C-space position. Otherwise
the difference is transformed back into C-space via the inverse Jacobian and
then added to the previous guess. Thereafter, the procedure is iterated until
the appropriate position in C-space is located. On full grids, the stencil walk
algorithm usually needs less than five iterations to find the correct C-space
position.

As yet, the modifications of the stencil walk algorithm seem to be very
moderate. But the main question is how to calculate the inverse Jacobian.
On full grids, this is done on the fly by tri-linear interpolation of the eight
Jacobians at the vertices of the current cell and subsequent matrix inversion.
The Jacobians at the vertices are computed by finite differences. However,
tri-linear interpolation is not possible on sparse grids. Thus, we have to use
sparse grid interpolation and we have to store the inverse Jacobian, i.e. the
respective contribution coefficients, at each sparse grid point. This memory
overhead can only be justified with the fact that sparse grids themselves are
very storage efficient.

Now we describe how the contribution coefficients of the inverse Jaco-
bians are computed and stored. In case of uniform sparse grids, we com-
pute the contribution coefficients in a preprocessing step from the input data
and store the coefficients in the sparse grid structure, which is done by the
setCoeff (...) methods. The data sets usually do not contain the Jacobians
explicitly, thus, the Jacobians and their inverse matrices have to be calculated
as well as their contribution coefficients. Since a contribution coefficient can
not be computed from a single function value but from a specific collection
of function values, the inverse Jacobians have to be stored somewhere. We
have modified the setCoeff (...) methods in such a way that in a first pass
the contribution coeflicients of the function values and the inverse Jacobians
are computed and stored in the sparse grid structure. In a second pass, the
contribution coefficients of the inverse Jacobians are computed and stored
over the original components of the inverse Jacobians. The second pass tra-
verses the levels beginning with the highest level and ending with level 1.
It is done this way because the contribution coefficients only depend on the
current function value and on the function values of lower levels. This fact
can be deduced from Egs. (3.3) and (3.4). Hence, it is possible to overwrite
the original components of the inverse Jacobians successively. Notice that
level 0 is not part of the mentioned second pass because in level 0 contri-
bution values and function values coincide. On page 27 the pseudo code of
hbSparseGrid: :setCoeff(...) is listed for uniform and curvilinear grids.

3.3.5 Modules for Particle Tracing

Our particle tracing algorithms, which work on data sets given on sparse
grids, are implemented as modules within the framework of the IRIS Ex-
plorer visualization environment. StreakbandHB is a particle tracer that
can use plain and adaptive sparse grid interpolation methods on uniform
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Comparison of hbSparseGrid::setCoeff() for uniform and curvilinear grids.
hbSparseGrid::setCoeff(...) Set contribution coefficients on uniform sparse grids
{ process boundaries

allocate memory for all levels

for (i) = [0 ... maxGridLevel] loop over all levels
setCoeff() of level i set contribution coefficients of function values

hbSparseGrid::setCoeff(...) Modified version of setCoeff()
Set contribution coefficients on arbitrary grids
{
process boundaries

allocate memory for all levels

for (i) = [0...maxGridLevel] loop over all levels
setCoeff() of level ¢ if curvilinear, set inverse Jacobian as well
if (curvilinear grid)
for (i) = [maxGridLevel...1] inverse loop
setCoeffInvJac() of level ¢ set contribution coefficients of inverse Jacobian

grids. StreakbandHBcombi implements the combination technique on uni-
form sparse grids. The module StreakbandHBcurvi can deal with curvilin-
ear grids using plain or adaptive sparse grid interpolation. StreakbandHBCC
employs the combination technique on curvilinear sparse grids.

For integration, we use the integration schemes that we have already
implemented in our full grid particle tracer, called Streakband. A comparison
of these schemes can be found in [3.27]. An adaptive Runge-Kutta method
of order 3 (RK3(2)) is used for the tests described in Subsect. 3.3.6.

In order to visualize the integral curves, we have chosen the same geo-
metrical primitives as in our full grid particle tracing module, namely lines,
bands, tubes, balls, and tetrahedra. Of course, all kinds of traces can visual-
ize an additional scalar value by means of color coding. Moreover, balls and
tetrahedra can reveal another scalar value by their size and bands and tetra-
hedra display the local vorticity of the flow via rotating around the actual
streak line. Since all Streakband modules provided the same functionality,
their results can be compared easily (see Subsect. 3.3.6).

Besides the actual particle tracer, some additional modules (compare
Figs. 3.5 and 3.6) had to be implemented in order to handle sparse grids
properly. First of all, a module, called DemoSparseGridHB, creates an ana-
lytic test vector field on a sparse grid of a certain level. Secondly, a function,
denoted LatToSparseGridHB, is used to transform a full grid given as Ex-
plorer cxLattice data type into a sparse grid. Finally, PrintSparseGridHB
is a helpful tool for debugging sparse grid routines.

In order to allow these new modules to send and receive sparse grid data
via the Explorer network, the following new Explorer data type has been
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Fig. 3.5. Example of an IRIS Explorer map for sparse grid particle tracing.

created with two arrays of the cxLattice data type being used to store the
contribution coeflicients of each node of the sparse grid.

root typedef struct {

int dataDim;

int maxAllocLevel;

cxLattice subspace[maxAllocLevel];
int sixMaxAllocLevel;

cxLattice bndSubspace [sixMaxAllocLevel] ;
} HBSparseGrid3D;

3.3.6 Examples and Results

First of all, we are going to discuss the results of particle tracing on uniform
sparse grids. In order to compare our sparse grid particle tracing module with
full grid particle tracers, two data sets have been used. The first one is a cavity
flow data set (see Fig. 3.7) on a full grid of 129° nodes, which corresponds to
level 7 in sparse grid terminology. The data set contains velocity, pressure,
and temperature data at each vertex requiring more than 40 MB. The same
data set with a resolution of 257% (level 8) would need more than 320 MB,
which is probably too much for most workstations. On the other hand, this
data set stored on a sparse grid consumes only 175 kB for level 7 and 415 kB
for level 8. The second data set is a vortex flow (compare Figs. 3.8 and 3.9)
given analytically. Therefore, we are able to create sparse and full grids in any
resolution only limited by the main memory of the used machine. This vector
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Fig. 3.6. User interface of the sparse grid particle tracing modules StreakbandHB
and DemoSparseGridHB.

field was chosen for our quantitative performance tests, with the results being
comparable to the ones from the cavity data set.

For each experiment nine streak ribbons consisting of about 500 parti-
cles were integrated using an adaptive RK3(2) scheme (see Fig. 3.9). Time
measurements have shown that interactive particle tracing is possible even
on sparse grids of level 8. However, the drawback of sparse grid interpola-
tion is that the computing time rises at least quadratically if the grid level is
increased. In contrast to this, the computing time of the full grid module is
only growing slowly, since in theory, the time for particle tracing on full grids
is independent of the grid size. Investigating the accuracy of sparse grid par-
ticle tracing, the traces computed by StreakbandHB are compared with their
counterparts resulting from Streakband. Theory (see Eqgs.(3.6) and (3.9))
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Fig. 3.7. Streak tubes in a cavity . 0 l
flow; the red tubes are computed o 0 o

on a full grid of level 7, the other
tubes are created on sparse grids
of level 7 (yellow), 5 (blue), and 3 Fig. 3.8. Colored streak balls and tetrahe-
(green). dra in a vortex flow given on a sparse grid.

Fig. 3.9. Streak bands in a vortex flow; ribbons containing blue edges display the
flow on a full grid of level 7, bands with green edges the flow on sparse grids of level
0 (left), 1 (middle), and 4 (right); the ribbons computed on full and sparse grids
coincide on screen for levels greater than 3.

tells us that the difference should be rather small. Moreover, the integration
error of RK3(2) is on the order of O(73) where 7 denotes the current time
step (see the discussion in [3.27]). From this point of view, it does not seem
to be too bad using sparse instead of full grid particle tracing. In fact, the
results of particle tracing on the analytic data set confirm these estimations,
since the ribbons computed on full and sparse grids coincide on screen for
levels greater than 3 (compare Fig. 3.9). However, for the derivation of the
mentioned upper bounds for the interpolation errors, a certain smoothness
of the data was a prerequisite. Since discrete data sets are not smooth at all,
these estimations do not hold in this case. Indeed, for discrete data Fig. 3.7
reveals that the particle traces computed on sparse grids converge rather
slowly to the full grid solution. Nevertheless, due to the great advantage of
low memory consumption, it is possible to use a sparse grid of a sufficiently
high level to overcome this problem.
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Fig. 3.1 . Streak balls in the blunt fin data set; the red balls are computed on a
curvilinear sparse grid of level 4, the yellow ones on a grid of level 3, and the green
ones on a grid of level 2.

For the adaptive grid traversal, several experiments have shown that it is
important whether the L2 norm is used for the adaptive traversal or the L™
norm. Employing the L norm leads to a marginal decrease in computing
time but to a significant loss in accuracy. However, by using the L? norm, it
is possible to decrease computing time by about 20 per cent and to achieve
nearly the quality of the corresponding plain sparse grid.

The next approach for accelerating particle tracing on sparse grids is the
combination technique. The first advantage of this technique compared to
adaptive grid traversal is the fact that there is no loss in accuracy at all.
Combination technique and plain sparse grid interpolation create exactly the
same particle path. The second and more important benefit is that the com-
bination technique is almost by a factor of four faster than plain sparse grid
interpolation. That is, particle tracing based upon the combination method is
a lot faster and also more accurate than particle tracing based upon adaptive
sparse grid interpolation. Hence, the combination technique should be used
for interpolation on sparse grids.

Now let us turn to curvilinear sparse grids. As mentioned in Subsect. 3.3.5
we have implemented curvilinear grids with all three sparse grid interpolation
methods, but in consideration of the last paragraph we usually employ the
combination technique in connection with curvilinear sparse grids. For a first
test of particle tracing in curvilinear sparse grids we have used the well-known
blunt fin data set (see Fig. 3.10). Additionally, our module has been verified
with several analytic data sets (compare Figs. 3.11 and 3.12). On the one
hand side these tests have confirmed that smooth data sets are more appro-
priate for using sparse grid methods than discontinuous data. On the other
hand these tests have revealed that particle traces calculated on curvilinear
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Fig. 3.11. Streak lines in a vortex flow; yellow lines display the flow on a full grid,
blue, green, and red lines on a curvilinear sparse grid of level 2, 3, and 4 respectively.
In the closeup on the right hand side, it can be seen that the traces computed on
the full grid and the sparse grid of level 4 are almost identical.

sparse grids converge slower to the corresponding full grid trace. In analytic
data sets traces computed on sparse and full grids usually coincide on screen
for levels greater than 4. The reason for this decline in accuracy might be
due to a less accurate point location caused by an intensive use of sparse
grid interpolation in the stencil walk algorithm. Finally, time measurements
have shown that particle tracing on curvilinear sparse grids is about five
times slower than tracing on uniform grids. This is roughly the same decel-
eration as on full grids. Nevertheless, interactive particle tracing is possible
on curvilinear sparse grids of level 7 by using the combination technique.

3. olume endering

Three-dimensional scalar data sets resulting from measurement or numeri-
cal simulation can be visualized very well by volume rendering techniques.
Direct volume rendering tries to convey a visual impression of the complete
data set by assigning different color and opacity values to different objects
or value ranges within the volume. The resulting image is then computed by
taking into account the so defined emission and absorption effects as seen by
an outside viewer. The underlying theory of the physics of light transport
is simplified to the well known volume rendering integral in the case of ne-
glecting scattering and frequency effects [3.17]. Given the emission and the
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Fig. 3.12. Streak tetrahedra in an analytically given flow on a curvilinear sparse
grid of level 5.

absorption the intensity along the ray s can be computed from:

= ()" ) ds

s

The discretization of this integral together with the assumption that the
mapping from scalars to RGBA values can be described by transfer functions
results in the compositing formulas for computing the intensity contribution

along one ray of sight:

k1
= Z k H(l ),
k=1  i=0

The emission of the voxel f and its opacity j are derived from the transfer
functions after interpolation of the scalar value from the discrete sample
points.

The basic ray tracing idea [3.19] is to shoot a ray of sight through every
pixel into the volume, reconstructing the function value at appropriately cho-
sen sample points along the ray and blending the mapped color and opacity
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values. arious variants of this technique exist. -ray like images are gener-
ated by neglecting the opacity and just summing up all values. The so-called
maximum intensity projection method (MIP) determines the intensity of a
pixel to be the maximum function value occurring along the corresponding
ray. Even iso-surfaces can be rendered if an illuminated pixel is displayed if
the difference of the current function value and the iso-value changes sign. In
this case, the surface normal needed for the lighting computation coincides
with the direction of the function gradient.

Acceleration of this expensive technique is achieved by adaptive sampling
[3.9, 3.7], by exploiting coherence [3.18], by parallelizing in image and object
space, and by exploiting hardware in graphics workstations [3.5] or in spe-
cial purpose architectures [3.21]. Related to our work are approaches where
volume rendering is performed on compressed data sets. Wavelet based tech-
niques [3.29, 3.20] reconstruct the function value from a wavelet decomposi-
tion instead from tri-linear interpolation, leaving the basic volume rendering
algorithm unmodified.

3.4.1 Soft are ased nterpolation

So far the only possibility to visualize data given on a sparse grid was to
expand the sparse grid to a full grid and then to use the traditional techniques
on the full grid. For larger sparse grids this approach is prohibitive, because
the full grid does no longer fit into the main memory of standard workstations.
Additionally, the process of expanding a sparse grid is extremely slow.

Therefore, we follow the idea of other compression domain volume ren-
dering techniques and use a traditional ray casting algorithm with the tri-
linear interpolation substituted by sparse grid interpolation. Of course we em-
ploy the different interpolation techniques presented in the Sect. 3.3. Specifi-
cally, we reuse the methods encapsulated in the C++ classes for the standard
method and the combination technique. Currently, curvilinear grids are not
supported, though. These grids would require a stencil walk inside the inner-
most loop of the ray caster, which would slow down the interpolation process
significantly.

Due to the nature of volume visualization, a huge number of sampling
points is needed in the ray casting process. Even with the combination tech-
nique, rendering times are far away from interactivity. However, in contrast
to particle tracing, the volume rendering process addresses sampling points in
equidistant planar slices of the volume. This order can be utilized to acceler-
ate the interpolation process by using graphics hardware, which is described
in the following section. We are going to see that hardware based interpo-
lation can only be performed in fix point arithmetic. Therefore, it is not as
accurate as the software based interpolation, which can still be reasonable
for generating high quality images.
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3.4.2 Texture ard are ased nterpolation

When interpolating data using the combination technique the processor
spends most of its time on the tri-linear interpolation of the full grids. In order
to significantly reduce the computation time, we decided to take advantage
of the texturing hardware of modern graphics workstations. The graphics
engines of these workstations have hardware based support for MIP mapped
texturing. This technique reduces texture mapping artifacts during minifi-
cation if pixels are covered by many texture elements. In this case texture
filtering with large kernel sizes would be appropriate which cannot be done in
real time. Therefore, several down-sampled versions of the texture are stored
together with the original resolution. Tri-linear interpolation in hardware is
used to interpolate between texture levels and within the texture.

As a variant of this technique several vendors have implemented real tri-
linear interpolation for 3D textures mapping [3.23]. While originally intended
to be used for volumetric effects like fog or wood texture, 3D textures turned
out to be a key feature for interactive volume rendering of regular grids [3.31].
The basic functionality provided by the underlying OpenGL extension can
be described as follows. Given a flat polygon whose arbitrary position and
orientation within the volume texture is defined by appropriate 3D texture
coordinates assigned to each vertex, a 2D texture is reconstructed on the
polygon by tri-linear interpolation.

In our case of the combination technique for sparse grids we do not use
the graphics hardware for the actual volume rendering, that means for view-
ing and compositing, but we employ 3D textures, tri-linear interpolation and
blending operations in order to implement Eq. (3.16). To exploit the pro-
vided functionality we had to rewrite our algorithms in such a way that
they simultaneously reconstruct all values in an entire plane, which of course
is oriented perpendicular to the viewing direction of the volume rendering.
Our ray caster then proceeds by compositing along rays through all textured
image slices.

In detail, after defining 3D textures with the values of the full grids
I%,iis» OUr Wb 1SparseGrid class draws the appropriate plane automati-
cally performing the tri-linear reconstruction. Then the partial results have
to be added and subtracted according to Eq. (3.16). This is implemented by
a blending step using GL. CADD. TandGL. C. V S S BT ACT_ T
blending extensions of OpenGL. The pseudo code on page 37 shows the two
main functions, createTextures () for creating and loading the volume tex-
tures and dra () for drawing a view of the function. createTextures() has
to be called only once, because the textures are stored in the graphics hard-
ware and do not need to be changed for different views. Note that the data
function d() is no longer needed in dra (). These main functions need two
helper functions that are described on page 38.

In order to switch quickly between the different volume textures, they all
have to fit into texture memory at the same time. By using texture objects of
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OpenGL, preloaded textures can be selected for rendering almost instantly.
Recall that the combination technique uses full grids of size (2¢4+1) (27+1)
(2¥ +1). On the other hand, volume textures have to be of size2 2 2 .In
order to fit the full grids completely into volume textures, we have to allocate
textures of size 2i+1 20+l 2k+1 Hence, quite a lot of texture memory
is wasted, although it is a scarce resource. In principle, OpenGL supports
volume textures featuring a so called border of size 2 in every direction such
that the mentioned full grids would fit almost seamlessly. Unfortunately, these
texture borders are not implemented in todays hardware.

When using graphics hardware for mathematical computations, accuracy
can be quite a problem. On Silicon Graphics machines the blending operation
can currently be performed in the frame buffer with 16 bits at most. We can
use the accu wulation bu er for higher accuracy, however, using this feature
slows down the calculation process significantly. Since pixel values are auto-
matically clamped to values in the interval [0, 1], all texture elements have
to be scaled down by the number of functions contributing positive values
to Eq. (3.16). For a level 10 sparse grid, 91 of 136 functions contribute pos-
itive data, which means a loss of almost 7 bits, resulting in only 9 bits of
accurate information. Since we have at best 16 bits of accurate information
in the frame buffer, it is sufficient to use only 2 bytes of texture memory per
voxel. If future hardware will incorporate larger frame buffers with higher
pixel accuracy, this will automatically enhance the image quality of our al-
gorithm. Although visible artifacts are remarkably small, some can be seen
in the color plates (compare Figs. 3.15, 3.16, 3.17, and 3.18) for an example
with an effective accuracy of 7 bits.

By using the accumulation buffer, these artifacts can be reduced, so that
they are barely visible. Because the frame buffer has to be combined with
the accumulation buffer for every plane drawn, its usability strongly depends
on graphics pipes that provide hardware based accumulation buffers like
SGPI’s Infinite Reality system. Additionally, off-screen rendering using SGI’s

bu er extension is currently not possible with this approach.

3.4.3 Environment for olume isuali ation

In order to evaluate the different sparse grid interpolation algorithms for vol-
ume ray casting we have developed a special visualization environment. It
supports several input formats for full grids as well as for sparse grids. Full
grids are automatically converted into sparse grids for the selected interpo-
lation technique.

The user is able to select different ray casting techniques and shading
models, namely -ray, MIP, and iso-surface mode. Several parameters that
are needed for the shading models can be changed within the user interface
as well as the size of the rendered images and the width of the sampling
steps. An nwventor o iner iewer is used to specify the view direction
for the rendering process interactively. The main window, which is shown in
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ere the functions that are used to visuali e any scalar volumetric function :[0,1]°  [0,1]
are described using pseudo code  he function createTextures() is called once to create the
necessary textures and to transport them into the graphics hardware the function dra () is
the actual volume ray caster emember that the interpolation function is given by

n = E icl ig iz 2 E icl inig T E icl ig ig (3.22)

i1 4igtiz n42 i1+ig4iz ntl iy +igtiz n

he functions dataToTexture() and calc alue ect() are subroutines and splitted for clarity
and code reuse

his version uses the frame buffer for accumulating the function values, not the accumulation
buffer  he later can be used for greater accuracy, but it slows down the calculation process

global 1, @1, [ evel in direction of the three azes of all textures
n: otal number of textures
n4: umber of teztures with positive contribution to E )
global function create e tures Create textures for a given function d and level
in: : evel
d: olume data [0,1]2  [0,1]

{
1 akeCurrent (...) Make the graphics hardware reali e that we need it
n =0, ny:=0
Count number of textures that have a positive contribution to the function value
his number is needed in data o exture(), thus it has to be calculated first
for (i,7) =[1...] [r...]
if (i+j+1< +2)
ny :=ng +1
for (i,j) =[1...] [r...1]
if (i+j+1<)
ngy=ng+1

for (i,5) =[1...] [1...] ow create the positive textures
if (i+j+1< +2)
data o e ture(n ,d,i,j, +2—-i—j,1), n =n +1

for (i,7) =[1...] [1...]
if (i+j+1<)
data o e ture (n ,d,d, j, —i—3j,1), n =n +1
for (i,7) =[1...] [1...1] ow create the negative textures, scaled with 2

if (i+j+1< +1)
data o e ture(n ,d, 4,5, +1—-i—3,2), mn :=n +1

} n  now holds the total number of textures
global function draw roaw a view of the volume
in: h ,h: Bitmap si e

h : umber of planes to be sampled

BIGE Bitmap to draw into

ector to lower left of back-most plane (starting point)
s : ifference vectors to lower right upper left of back-most plane
from back-most to front-most plane for starting point
from back-most to front-most plane for perspective correction

shade: Shading function
{

1 akeCurrent (...) Make the graphics hardware reali e that we need it
for = [0...h] ender plane by plane, back to front
calcValue ect ( , s ,h ,h ,t) nterpolate data into intermediate bitmap t
= 4+ L ncrement plane vectors

= + L s = + .
shade (¢, ,h ,h ) Shade interpolated data to bitmap
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function data o e ture Create one texture and load it into the graphics hardware
in: n: exture number
d: olume data [0,1]3 [0,1]

P evel in direction of the three azes
ata scaling factor

{
1 ind e ture ( - - - ,n) Select texture to be loaded
1 e ara eteri(...) Set minor texture parameters
le nvi( - -, - .- , - ) Set modulation mode
[n] = , [n] = , [n] := Save si e for use in calc alue ect()
s =2-2 , 8§ :=2-2 , § :=2:2 extures have to be of si e 2* in each direction
t[] =0
for (i,j,k) = [0...2 ] [0...2 ] .2 0] Sample data for ez mage E ()
tlk+s (j+s 1)) := o -d (2—, 2#, 2i ) ata has to be scaled by -1 (see text)
ow copy data to texture memory
le a e ( - - - ,0, = - ,8,8,s8,0,
- b - K t)
}
function calcValue ect nterpolate values in one rectangular area
in: : ector to lower left of current plane
ifference vectors to lower right wupper left of current plane
h ,h : Bitmap si e
t[-1[-]: Bitmap to be written in
1Viewport (0,0, h , h ) Set rendering area
IClear ( - - - ) Clear the frame buffer
1 lend uation ( - - o) dd all textures in the frame buffer
fori = [0...n —1]
= 1 i = 1 i = 21 T Calculate tezture coordinate bias
1 ind e ture ( -, i) Select correct preloaded texture
if (i=n4) s soon as all posztwe contributing textures are done, start subtracting
1 lend uation ( - - - - )
1 ein( - - ) raw a texture mapped rectangle
leCoordf( + =+ =+ )
1Verte f (0,0)
+
1 e Coord f( +2 + 5 + ., +2 + )
IVerte f (1,0)
+
1 e Coord f( +2 + 5 + +2 + )
IVerte f (0,1)
leCoordf( + + + 2+ + + 2+ + )
IVerte f (1,1)
1 nd ()
1 lush () ell graphics engine, we are done
1l ead i els(0,0,h ,h, - , _ , t) etch result from graphics engine

for (i,j) = [0...h —1] [0...h —1]
tli][4] == ny - t[d][4] Scale final result back to correct range
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Fig. 3.13. The main application window contains the user interface for choosing
view, shading models and rendering parameters.

Fig. 3.13, contains all user interface elements, while the rendered image is
shown in a separate window. The system is capable of rendering stills and
animations, which can be created from within the Examiner iewer widget.
By saving and loading the animation sequence the same views can be rendered
for different data sets.

The graphical user interface was developed using apid pp, an interactive
tool for creating applications [3.24] which uses the dew it class library based
on the standard 11 toolkit otif.

3.4.4 Examples and Results

We tested our implementation with several data sets. Two of them are cavity
flow data sets, given on a full grid of level 6, i.e. 65° nodes. These data
sets are the result of a numerical flow simulation and contain pressure and
temperature distributions of the flow. The third data set, given on a full grid
of level 8 (2572 nodes), contains a spherical harmonic (Legendre’s function),
which displays a solution of the Schrodinger equation of a hydrogen atom.
In addition, we used an analytic test function and a discontinuous one for
considering interpolation quality.

Figures 3.15, 3.16, 3.17, and 3.18 show -ray images of the pressure val-
ues in the mentioned cavity flow. These images have been rendered in order
to reveal differences between the four implemented interpolation algorithms.
In the OpenGL image rendered without using the accumulation buffer, small
flaws can be detected, whereas the other sparse grid methods render nearly
identical images. The artifacts in the OpenGL image occur because of the
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Fig. 3.14. Iso-surface of temperature in a cavity flow computed by the combination
techni ue (left) and computed on a full grid (right).

already mentioned loss of accuracy using the hardware for arithmetic opera-
tions. However, the small loss of accuracy is rewarded with quite a saving of
computing time and the possibility to render off-screen. Furthermore, only
very few graphics systems support accumulation buffers in hardware.

In the other figures, sparse and full grid results are compared using dif-
ferent lighting models and data sets. The two images in Fig. 3.14 display
iso-surfaces of the temperature in the cavity flow data set. In Figs. 3.19 and
3.22, the pressure of the same data set is visualized by means of the maximum
intensity projection lighting model. In further maximum intensity projection
images (see Figs. 3.20 and 3.23), the data set of a spherical harmonic func-
tion is visualized. Then, the temperature distribution in the cavity flow is
depicted in Figs. 3.21 and 3.24 by using an -ray lighting model. Finally,
Figs. 3.25 to 3.30 show that the smoothness of extracted iso-surfaces depends
on the used grid level.

Considering the performance of our volume visualization program we find
that the time consumption of the -ray and maximum intensity projection
algorithms is data independent and exactly the same, while the iso-surface
extraction takes about two times as long as the other methods. Moreover, the
total time of the iso-surface computation depends on the size of the extracted
surface.

We tested our implementation on several Silicon Graphics workstations,
ranging from the O2 to an Onyx with RealityEnginell and a BaseReality
pipes. Since the O2 systems do not have hardware based 3D texture sup-
port, only the software based interpolation schemes can be used in a sensible
way on these machines. We realized that rendering times of both software
implementations approximately increase by a factor of 1.4 every time the
used level rises by one, whereas the measured times of the hardware based
implementation increase by a factor of 1.2 . The speed of the interpolation
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Fig. 3.15. Sparse grid algorithm Fig. 3.16. Combination techni ue
Fig. 3.17. OpenG method Fig. 3.18. OpenG Accumulation
Bu er

on full grids does not depend on the used level, as anticipated. The combi-
nation technique is between seven and ten times faster than the sparse grid
algorithm. Furthermore, the OpenGL hardware method is between 25 and 60
times faster than the software combination technique. This results in a speed
up factor between 200 and 450 from the sparse grid to the hardware based
method. Hence, we are able to perform volume visualization on sparse grids
interactively exploiting the texture hardware for acceleration purposes.

The combination technique requires about four to five times the memory
of the actual sparse grid algorithm since some of the needed nodes are stored
several times. The OpenGL version of the combination methods consumes
about two and a half times the memory of the software version, because each
of the used textures has to have dimensions that can be written as two to the
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Fig. 3.19. MIP image of
pressure distribution on
a sparse grid.

Fig. 3.22. For compari-
son MIP image of pres-
sure distribution on a full
grid.

Fig. 3.25. Iso-surface of
a discontinuous test data
set given on a sparse grid
of level 4.

Fig. 3.2 . MIP image
of a hydrogen atom on a
sparse grid.

Fig. 3.23. For compari-
son MIP image of a hy-
drogen atom on a full
grid.

Fig. 3.26. Iso-surface of
a discontinuous test data
set given on a sparse grid
of level 6.

Fig. 3.21. -ray image
of temperature distribu-
tion on a sparse grid.

Fig. 3.24. For compar-
ison -Ray image of
temperature distribution
on a full grid.

Fig. 3.27. For compari-
son Iso-surface of a dis-
continuous test data set
given on a full grid.
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Fig. 3.28. Iso-surface Fig. 3.29. Iso-surface Fig. 3.3 . For compari-
of an analytical function of an analytical function son Iso-surface of an an-
given on a sparse grid of  given on a sparse grid of  alytical function given on
level 4. level 6. a full grid.

i-th power. Nevertheless, compared with the original full grid data set, both
implementations of the combination technique require a negligible amount of
memory.

3. onclusion

We have presented sparse grids as a competing approach for the compact
representation of three-dimensional data sets by means of hierarchical basis
functions. We have introduced two important visualization methods, particle
tracing and volume ray casting, working on the sparse grid representation.
They allow to carry out flow and volume visualization directly on the results
from a numerical sparse grid simulation without prior transformation to the
associated full grids. This is an important step for the broader application of
the sparse grid method, since in real applications it is often impossible to load
full grids of more than 5122 nodes into the main memory of a workstation for
visualization purposes. Furthermore, the sparse grid approach can be used as
a compression method in order to realize volume rendering of huge regular
data sets on workstations with a small amount of main memory.

Technically, we have presented several methods to accelerate the sparse
grid interpolation process. For particle tracing, we have implemented adaptive
sparse grids with error monitoring and the combination technique. By using
texture graphics hardware, we have been able to overcome the tardiness of
sparse grid interpolation in the case of volume visualization. Therefore, it is
possible to use flow and volume visualization on sparse grids interactively, in
contrast to other compression approaches.

Compared to the well-known wavelet compression [3.6, 3.8], we can state
advantages and disadvantages. The main benefit of the wavelet compression
is the fact that the wavelet decomposition is data dependent, which means
that the resulting compression is by itself adapted to the underlying data set.
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Comparing the decomposition process we find the wavelet decomposition be-
ing comparatively difficult, whereas the sparse grid decomposition is concep-
tually simple. On the other hand, the wavelet reconstruction is quite simple,
whereas the sparse grid reconstruction, i.e. the interpolation, is rather com-
plicated and very time consuming. However, the basis functions used in the
case of sparse grids are so simple (compact support and piecewise tri-linear)
that the texture hardware can perform the reconstruction in connection with
the combination method. Hence, in the end it turns out that the hardware
assisted sparse grid volume visualization is much faster than visualization
methods working on other compressed data sets.

We conclude this section by describing two scenarios where the visualiza-
tion process can take advantage of sparse grid methods. First, we assume that
a sparse grid data set resulting from a numerical simulation is given. Then,
there are two possibilities for the visualization. The traditional approach is
to interpolate the data set once into a huge full grid data set (see Table 3.1).
If the resulting full grid squeezes into the main memory of the machine, fast
full grid volume visualization methods can be performed. In contrast to this,
our strategy is to use the OpenGL algorithm for getting the first images of
the data long before the traditional interpolation process will be finished. If
the full grid data set does not fit into the main memory, a direct sparse grid
visualization method has to be performed anyway. As a second scenario, we
assume that a huge full grid data set should be visualized, which results from
a numerical simulation or from extensive measurements. Now, the sparse
grid method can be used to compress the huge data set such that it will fit
into the main memory of a workstation. Then, it is possible to visualize the
compressed data using the techniques presented in this paper.

3. Future or

There are several directions of future work. Concerning volume visualiza-
tion, the first goal is to implement more sophisticated transfer functions
and lighting models into our visualization program, for instance an emission-
absorption model. As a second goal, we intend to use OpenGL in order to ac-
celerate the surface and volume illumination as well. This approach is already
used in case of volume rendering on full grids as described in [3.26, 3.30, 3.31].
As far as particle tracing is concerned, additional visualization techniques
could be implemented on sparse grids. Feasible directions are texture based
algorithms and iconic methods combined with feature extraction. Finally, our
sparse grid particle tracer could be extended to multi-block data sets in the
same way as it has been done in our full grid particle tracing module [3.14].
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