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What is r600_demo?

● Bringup tool for r6xx and r7xx GPUs from AMD
● Originally based on r300_demo

● Needed because:
● Big architectural changes from r5xx to r6xx
● No open source driver to build upon
● No documentation available at AMD in ready to

use form – created on-the-fly
● Programming turned out more difficult than 

anticipated

 Easy to understand, self-contained
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The Crew

● AMD
● John Bridgman Legal, IP
● Alexander Deucher r600_demo, DRM, EXA, docs
● RichardZ Li DRI driver, shader compiler
● Cooper Yuan DRI driver

● Novell
● Egbert Eich Memory setup, AtomBIOS, etc.
● Matthias Hopf r600_demo, DRI init & driver, docs
● Luc Verhaegen Command submission

● RedHat
● Dave Airlie Initial DRM

● You!
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History

● 2007/7 Start of the radeonhd project,
first hardware docs

● 2008/1 r5xx programming docs
r6xx CP docs

● 2008/2 r5xx register docs
● 2008/5 r6xx register & “programming” docs
● 2008/6 Start of r600_demo

Working CP, DMA
● 2008/7 Working state output, register dump

First triangle test (dysfunctional),
programmed based on docs
TCore (ATI bringup environment)
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History (2)

● 2008/7 Alex adds CP dump from working
TCore tests (4MB!) – still not working

● 2008/8/27 Alex: “At long last. Triangle.”
A bit broken, though, RV770 only.
Cleanup phase begins

● 2008/9/16 Alex: Triangle on r6xx
● 2008/9/25 Matthias: “I have a triangle!”
● 2008/11 Weird memory setup bug discovered.

Finally DRM works on all tested cards.
● 2008/12/29 r600_demo released to public

Approx. 82KB code left of 4MB
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Documentation

● Already available:
● r5xx Programming docs (CP is similar)
● r6xx Instruction Set (Shader)

Partially wrong, though (constants: r600_demo)
● r6xx 3D Register docs

● To-be-released:
● r[67]xx Programming docs

(approx. 50 pages, includes CP docs)
● r[67]xx Lessons learned (Wiki)

● http://developer.amd.com/documentation/guides/Pages/default.aspx#open_gpu
● http://www.x.org/docs/AMD/

http://developer.amd.com/documentation/guides/Pages/default.aspx#open_gpu
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r600_demo: Setup

● You need
● git r600_demo
● Recent enough radeonhd (1.2.4 or git)
● Latest DRM (r6xx-r7xx-support branch)

● xorg.conf
● Option "DRI"
● Option "AccelMethod" "none"

Alternatively (for the moment) "force-shadowfb"
● Run “r600_demo <–opts> <tests>” as root
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r600_demo: Tests

● r Reset GPU – often enough this works
● c CPU based clear screen

● t Basic triangle test. Options –f, –i, –u, –S
● T Clipped transformed triangle test
● q Textured quad test
● e EXA solid test (blending)
● E EXA copy test

● P Performance test suite

● w, W, b, x Old & temporary tests
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Performance Numbers

● All measured in GigaFLOPS
(theoretical peak performance in parens)

● Biggest performance with long ALU clauses, 4 
vector and 1 trans unit active, multiply-and-add

● M72 34.69 (35.2)
● RV610 41.46 (42)
● RV670 426.45 (427)
● RV770 1196.43 (1200)

● … unbelievably close to theoretical values...
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Power Usage

● Some early experiments
● Only adjusting engine clock, memory clock,

core voltage, not PCIe lanes, clock gating, 
switching off unused blocks, etc.

M72 (incl. system) RV670 RV770
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r[67]xx: Architecture

● CP
● Ringbuffer
● Microcode based
● No real processor, architecture unknown

● Control flow
● Loops, if-then-else, etc.
● Works on 2x2 pixels, closely coupled
● Many threads in flight

● ALU
● 5-vectors

● Fetch units
● Vertex fetch, texture fetch

● Blend, scissor, other fixed function units
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r[67]xx: CP

● Fed by a ring buffer in system memory
● Can parse indirect buffers (“Subroutines”)
● Writes into register space: Type-0 packets
● Some macro-like commands: Type-3 packets

Partially adapted in chipset specific way
● Can block on registers, emit interrupts and fences,

write to system memory, etc.
● Very similar to r5xx system

● Almost all Type-3 packets changed, though
● No control flow instructions

● Not useful for validation
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r[67]xx: Shaders

● Unified shader architecture
● Shaders are loaded dynamically from memory

(very different to r5xx)
● Cache coherence!
● Easy to lock up GPU (end of program only 

specified by single bit, length of program not 
explicitly specified)

● 4 (5) types of shaders
● 3 clause levels in each shader
● Data transported either in explicit GPRs

or GPRs defined by semantic mappings
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r[67]xx: Shader Types

● ES – Export Shader
● Only used with geometry shader (“Early Shader”)
● Equivalent to vertex shader otherwise

● GS – Geometry Shader
● Works on primitives, not only vertices
● May submit more/less vertices (tessellation / kill)

● VS – Vertex Shader
● Transforms vertices from world to clip coordinates
● Isn't fed vertices, but has to fetch them

(different to r5xx!)
● Can invoke a Fetch Shader subroutine

● PS – Pixel Shader
● Working on fragments
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r[67]xx: Shader Layout

● Several levels
● Control flow instructions
● ALU clauses
● Fetch clauses

● Control initiates ALU, Fetch, may run in parallel
● Control and ALU instruction words 64bit
● Fetch instruction words are 128bit,

need 128bit alignment
● Runs 2x2 pixels a time, flags:

● valid – pixel covers primitive, is not KILLed
● active – pixel in correct branch of if-then-else / loop
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r[67]xx: Control

● Commands
● Invokes ALU and FETCH clauses
● Loops, breaks, subroutines, jumps, conditions
● Stack handling, change predication masks
● Export to memory or ring buffers

● Remember
● Always 2x2 pixel in flight
● if-then-else: all clauses have to be executed, only change 

predication masks
● Loops only exit if all pixels have inactive state
● Flags for executing insts/clauses depending on

valid and active state
Necessary for computation of derivatives

● CALL_FS and RETURN_FS wrong in r600isa.pdf
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r[67]xx: ALU

● 4-component “vector” unit, 1 scalar unit (Trans)
● All independent from each other
● Restrictions regarding source operands
● Reducing ops like dot4 or max4

● Clause contains groups of 1-5 ALU ops
and 2 optional 2-component constants

● 2- and 3-operand instructions
● Integer

add/sub, mul, and/or/xor, cond. move, ...
● Float

add, mul, round, cond. kill, muladd, dot4, …
● Predication
● Trans unit only

shift, int↔float, 1/x, 1/sqrt(x), sin, exp, log, ...
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r[67]xx: ALU (2)

● Sources:
● GPR 0-127 – top n(4) clause local
● Constants (inline, 256 registers / memory cache)
● Constants FLOAT 0, 1, 0.5 or INT -1, 0, 1
● Previous group registers PV, PS
● Swizzle, modify (negate, absolute)

● Destination
● GPR0-127
● Swizzle, modify (x2/x4/x.5, clamp, mask)
● Predication masks (clause and global)

● Up to 128 ops per clause (more on r7xx?)
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r[67]xx: ALU Pitfalls

● Source Restrictions
● Order of ops is always x,y,z,w,Trans

Last op of group indicated by LAST bit
● Max. 3 different GPR sources per group
● Max. 4 different reg constant compnts per group
● Max. 2 different constants for Trans
● May use either reg constants or constant cache

● Write to registers is delayed → PV, PS
Hidden by logic except for indirect GPR addressing

● Format of 2- and 3-operand ops different
● Format of 2-operand ops different between

r6xx and r7xx
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r[67]xx: ALU Pitfalls (2)

● Bank swizzling: (r600isa.pdf pp. 49ff)
● Only one of each x,y,z,w GPR component can be 

loaded per cycle (3 cycles per instr, called 0-2).
● Per scalar instruction bank_swizzle can select which 

cycle each operand comes from. e.g.:
SRC0 SRC1 SRC2 SWIZZLE cycle0 cycle1 cycle2
1.x 2.x 012 1.x 2.x -
3.x 1.y 201 1.y - 3.x
2.x 1.y 102 (1.y) (2.x) -

● Multiple ops can reference same data of a cycle
● Special case: square() - i.e. 1.x*1.x ignores cycle 1
● No restrictions for constants or PV/PS.
● Trans shares cycles, but can load multiple 

components in a single cycle slot
● And more...
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r[67]xx: Fetch Units

● Clause is either vertex or texture fetch clause
● Wrong type works on systems w/o vertex cache...

● Up to 6 fetches per clause (more on r7xx?)

● 160 buffers per shader type VS, GS, PS (FS: 16)
● Yes, vertex fetches can be done in PS...

● Buffers set up as either vertex or texture buffers
● 18 sampler units for interpolating textures

● Can be reused → only one per format needed
● Reusing in same clause? Probably not...
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r[67]xx: Vertex Fetches

● Vertex buffers
● Address (40bit)
● Total size, number of entries
● Defaults for vertex fetch clauses

● Vertex fetch op
● Format (FMT_8_8_8_8, FMT_32_32_FLT, etc.)
● Destination component swizzle (x,y,z,w,0,1,-)
● Scaling (normalize, integer, scaled), sign

Performs int→float conversion
● Endianess
● Offset

● First fetch: Megafetch, indicating #bytes
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r[67]xx: Texture Fetches

● Textures
● Address, MIP address (?)
● Dimensionality
● Format, tiling mode
● Width/height/depth, pitch
● Swizzling
● MIP levels

● Texture Samplers
● Clamping
● Minifying, magnifying filter (point, linear, cubic)
● MIP filter
● More to be analyzed (anisotropic, etc.)
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r[67]xx: Texture Fetches (2)

● Texture Fetch op
● Instruction type
● Resource ID (0-160), Sampler ID (0-17)
● Coordinate GPR
● Destination GPR
● Scaling (0-1 w/ repeat+mirroring  /  0-size)
● Coordinate swizzling (x,y,z,w,0,1)
● Destination swizzling
● Fixed point offsets, LoD bias

● Instructions partially unclear in docs
● Not only texture fetch, but also derivative + LoD 

calculation, weights, etc.
● TEX_INST_SAMPLE_C_G_LB ?!?
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r[67]xx: Fetch Units Pitfalls

● Scaling doesn't seem to work as indicated
● E.g. Floats work FMT_32_32_32_32_FLOAT
● FMT_16_16 integers scaled in fetch unit work fine
● FMT_32_32 integers don't...
● - fetched as FMT_32_32_FLOAT normalized and converted 

in ALU.Trans unit work fine (signed only)
● - fetched as FMT_32_32 work on all except

RV610 and RV620...
● - fetched as FMT_32_32 integers and

converted in ALU.Trans unit show flat shaded triangles 
only on RV620, RV670, and RV770...

● - same fetched as FMT_32_32_FLOAT works
on RV620...

● WTF?!?
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r[67]xx: Interpolator Setup 

● Maps GPR output of VS to GPR input of PS
● Input of VS is fixed: GPR0.x has index

● Defines GPR interpolation type
● Flat, linear, perspective correct
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r[67]xx: Vertex Submission

● No direct vertex submission mode like on r5xx
● Only vertex buffers
● No automatic fetch, explicitly code in VS or FS
● Draw initiation with Type-3 packet

● Indices
● 16 and 32 bit indices
● Automatic numbering, included in Type-3 packet,

or from additional buffer
● Pitfalls

● IT_DRAW_* Type-3 needs correctly associated
VGT_DRAW_INITIATOR, e.g.
IT_DRAW_INDEX_IMMD / DI_SRC_SEL_IMMEDIATE
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r[67]xx: Fix Function Parts

● Frame + Depth buffers
● Multiple render targets
● Need additional buffers for hierarchical Z
● High performance improvement with tiling

● Much more complex than r5xx
● Possible to map memory regions to CPU with de-tiling

● Clipping
● Tons of possibilities
● OpenGL clipping planes
● Scissors: generic, screen, window, viewport, 4 clip
● Viewport transformation

● Blending, Multisampling etc.
● Theoretically: Care about CPU cache
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r[67]xx: Cache Coherence

● Complex caching mechanisms with multiple
source and destination caches, no snooping!

● Cache invalidation
● Address ranges, cache types
● Wait for finished draws, flushing, fence notifications

● Source cache flushes
● On vertex buffer + texture uploads, shader changes

● Need to wait for finished draws + flushed cache
● On hardware→software transition
● On binding textures after render to texture
● On glFinish()

● Support for interrupt based pipelined fences
and cache flush notifications
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r600_demo: Basic Layout

● r600_demo.c
● Opens DRM, binds buffers, parses options, calls tests
● Dead ugly...

● r600_emit.h
● Packet emission, uses api defined in r600_hwapi.h
● Abstraction for later use in DRI driver

● r600_lib.c, r600_lib.h
● Support functions, buffer submission, etc.

● r600_init.c, r600_state.h
● Initialization, subsystem setup, draw initiation

● r600_reg.h
● Register definitions, most autogenerated from docs

● r600_shader.h
● Macros for shader definitions
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r600_demo: Ringbuffer Handling

● Uses mechanism reserved for X11 driver
● Doesn't work well with X11 acceleration
● Alternative: Direct ring programming

Only on 32bit due to DRM bug
● Irrelevant for tests

● Tests just define when to actually submit buffers
flush_cmds()
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r600_demo: Command Emission

● Reserve ring space, define variables etc.
CMD_BUFFER_PREAMBLE (dwords)
CMD_BUFFER_ALLOC (dwords)

● Basic macro for emitting a 32bit value to ring
E32 (dword)

● Emit float value
EFLOAT (float)

● Initiate Type-0 / Type-3 packet
EPACK0 (reg, num)   /   EPACK3 (cmd, num)

● Write single register (Type-0 packet)
EREG (reg, dword)    /   EREGFLOAT (reg, float)

● Wait for engine finished
EMIT_WAIT_3D_IDLE_CLEAN ()
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r600_demo: Chip Initialization

● set_default_state ()
● Contains quite some stuff to be moved to DRM
● Contains some magic values for magic registers
● Does extra cleanup if CLEAN_SETUP defined
● Tons of subsystem initialization
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r600_demo: The Triangle

● What you absolutely need
● Vertex buffer: set_vtx_resource ()
● Vertex shader: vs_setup ()
● Pixel shader: ps_setup ()
● Initialization: start_3d (), set_default_state ()
● Render target: set_render_target ()
● VB, VS, PS uploaded to GPU or GART memory,

cache flushing: upload ()
● Viewport setup or VTX_XY_FMT_bit
● set polygon mode, enable RT0
● Interpolator setup
● Draw: draw_auto ()

● Easiest starting point: r600_texture.c
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The Future

● DRI driver development
● Currently based on DRI, not DRI2 / gallium / etc.

● Never good to make two radical things at the 
same time

● End of last year: Basis for driver
(Software fallbacks only)

● Currently: hello.c from Red Book works with fixed
shaders + buffers

● AMD adds shader compiler
● That means some  IP issues have to be solved
● Needs a bit of time
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The End

Questions ?
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