
r600_demo
HowTo Render a Freaking Triangle

Matthias Hopf

SUSE R&D / Novell

2

What is r600_demo?

● Bringup tool for r6xx and r7xx GPUs from AMD
● Originally based on r300_demo

● Needed because:
● Big architectural changes from r5xx to r6xx
● No open source driver to build upon
● No documentation available at AMD in ready to

use form – created on-the-fly
● Programming turned out more difficult than

anticipated

 Easy to understand, self-contained

3

The Crew

● AMD
● John Bridgman Legal, IP
● Alexander Deucher r600_demo, DRM, EXA, docs
● RichardZ Li DRI driver, shader compiler
● Cooper Yuan DRI driver

● Novell
● Egbert Eich Memory setup, AtomBIOS, etc.
● Matthias Hopf r600_demo, DRI init & driver, docs
● Luc Verhaegen Command submission

● RedHat
● Dave Airlie Initial DRM

● You!

4

History

● 2007/7 Start of the radeonhd project,
first hardware docs

● 2008/1 r5xx programming docs
r6xx CP docs

● 2008/2 r5xx register docs
● 2008/5 r6xx register & “programming” docs
● 2008/6 Start of r600_demo

Working CP, DMA
● 2008/7 Working state output, register dump

First triangle test (dysfunctional),
programmed based on docs
TCore (ATI bringup environment)

5

History (2)

● 2008/7 Alex adds CP dump from working
TCore tests (4MB!) – still not working

● 2008/8/27 Alex: “At long last. Triangle.”
A bit broken, though, RV770 only.
Cleanup phase begins

● 2008/9/16 Alex: Triangle on r6xx
● 2008/9/25 Matthias: “I have a triangle!”
● 2008/11 Weird memory setup bug discovered.

Finally DRM works on all tested cards.
● 2008/12/29 r600_demo released to public

Approx. 82KB code left of 4MB

6

Documentation

● Already available:
● r5xx Programming docs (CP is similar)
● r6xx Instruction Set (Shader)

Partially wrong, though (constants: r600_demo)
● r6xx 3D Register docs

● To-be-released:
● r[67]xx Programming docs

(approx. 50 pages, includes CP docs)
● r[67]xx Lessons learned (Wiki)

● http://developer.amd.com/documentation/guides/Pages/default.aspx#open_gpu
● http://www.x.org/docs/AMD/

http://developer.amd.com/documentation/guides/Pages/default.aspx#open_gpu

7

r600_demo: Setup

● You need
● git r600_demo
● Recent enough radeonhd (1.2.4 or git)
● Latest DRM (r6xx-r7xx-support branch)

● xorg.conf
● Option "DRI"
● Option "AccelMethod" "none"

Alternatively (for the moment) "force-shadowfb"
● Run “r600_demo <–opts> <tests>” as root

8

r600_demo: Tests

● r Reset GPU – often enough this works
● c CPU based clear screen

● t Basic triangle test. Options –f, –i, –u, –S
● T Clipped transformed triangle test
● q Textured quad test
● e EXA solid test (blending)
● E EXA copy test

● P Performance test suite

● w, W, b, x Old & temporary tests

9

Performance Numbers

● All measured in GigaFLOPS
(theoretical peak performance in parens)

● Biggest performance with long ALU clauses, 4
vector and 1 trans unit active, multiply-and-add

● M72 34.69 (35.2)
● RV610 41.46 (42)
● RV670 426.45 (427)
● RV770 1196.43 (1200)

● … unbelievably close to theoretical values...

10

Power Usage

● Some early experiments
● Only adjusting engine clock, memory clock,

core voltage, not PCIe lanes, clock gating,
switching off unused blocks, etc.

M72 (incl. system) RV670 RV770
0

20

40

60

80

100

120

140

Maximum
Default
Low Engine
Low Memory
Low E+M
Minimum

11

r[67]xx: Architecture

● CP
● Ringbuffer
● Microcode based
● No real processor, architecture unknown

● Control flow
● Loops, if-then-else, etc.
● Works on 2x2 pixels, closely coupled
● Many threads in flight

● ALU
● 5-vectors

● Fetch units
● Vertex fetch, texture fetch

● Blend, scissor, other fixed function units

12

r[67]xx: CP

● Fed by a ring buffer in system memory
● Can parse indirect buffers (“Subroutines”)
● Writes into register space: Type-0 packets
● Some macro-like commands: Type-3 packets

Partially adapted in chipset specific way
● Can block on registers, emit interrupts and fences,

write to system memory, etc.
● Very similar to r5xx system

● Almost all Type-3 packets changed, though
● No control flow instructions

● Not useful for validation

13

r[67]xx: Shaders

● Unified shader architecture
● Shaders are loaded dynamically from memory

(very different to r5xx)
● Cache coherence!
● Easy to lock up GPU (end of program only

specified by single bit, length of program not
explicitly specified)

● 4 (5) types of shaders
● 3 clause levels in each shader
● Data transported either in explicit GPRs

or GPRs defined by semantic mappings

14

r[67]xx: Shader Types

● ES – Export Shader
● Only used with geometry shader (“Early Shader”)
● Equivalent to vertex shader otherwise

● GS – Geometry Shader
● Works on primitives, not only vertices
● May submit more/less vertices (tessellation / kill)

● VS – Vertex Shader
● Transforms vertices from world to clip coordinates
● Isn't fed vertices, but has to fetch them

(different to r5xx!)
● Can invoke a Fetch Shader subroutine

● PS – Pixel Shader
● Working on fragments

15

r[67]xx: Shader Layout

● Several levels
● Control flow instructions
● ALU clauses
● Fetch clauses

● Control initiates ALU, Fetch, may run in parallel
● Control and ALU instruction words 64bit
● Fetch instruction words are 128bit,

need 128bit alignment
● Runs 2x2 pixels a time, flags:

● valid – pixel covers primitive, is not KILLed
● active – pixel in correct branch of if-then-else / loop

16

r[67]xx: Control

● Commands
● Invokes ALU and FETCH clauses
● Loops, breaks, subroutines, jumps, conditions
● Stack handling, change predication masks
● Export to memory or ring buffers

● Remember
● Always 2x2 pixel in flight
● if-then-else: all clauses have to be executed, only change

predication masks
● Loops only exit if all pixels have inactive state
● Flags for executing insts/clauses depending on

valid and active state
Necessary for computation of derivatives

● CALL_FS and RETURN_FS wrong in r600isa.pdf

17

r[67]xx: ALU

● 4-component “vector” unit, 1 scalar unit (Trans)
● All independent from each other
● Restrictions regarding source operands
● Reducing ops like dot4 or max4

● Clause contains groups of 1-5 ALU ops
and 2 optional 2-component constants

● 2- and 3-operand instructions
● Integer

add/sub, mul, and/or/xor, cond. move, ...
● Float

add, mul, round, cond. kill, muladd, dot4, …
● Predication
● Trans unit only

shift, int↔float, 1/x, 1/sqrt(x), sin, exp, log, ...

18

r[67]xx: ALU (2)

● Sources:
● GPR 0-127 – top n(4) clause local
● Constants (inline, 256 registers / memory cache)
● Constants FLOAT 0, 1, 0.5 or INT -1, 0, 1
● Previous group registers PV, PS
● Swizzle, modify (negate, absolute)

● Destination
● GPR0-127
● Swizzle, modify (x2/x4/x.5, clamp, mask)
● Predication masks (clause and global)

● Up to 128 ops per clause (more on r7xx?)

19

r[67]xx: ALU Pitfalls

● Source Restrictions
● Order of ops is always x,y,z,w,Trans

Last op of group indicated by LAST bit
● Max. 3 different GPR sources per group
● Max. 4 different reg constant compnts per group
● Max. 2 different constants for Trans
● May use either reg constants or constant cache

● Write to registers is delayed → PV, PS
Hidden by logic except for indirect GPR addressing

● Format of 2- and 3-operand ops different
● Format of 2-operand ops different between

r6xx and r7xx

20

r[67]xx: ALU Pitfalls (2)

● Bank swizzling: (r600isa.pdf pp. 49ff)
● Only one of each x,y,z,w GPR component can be

loaded per cycle (3 cycles per instr, called 0-2).
● Per scalar instruction bank_swizzle can select which

cycle each operand comes from. e.g.:
SRC0 SRC1 SRC2 SWIZZLE cycle0 cycle1 cycle2
1.x 2.x 012 1.x 2.x -
3.x 1.y 201 1.y - 3.x
2.x 1.y 102 (1.y) (2.x) -

● Multiple ops can reference same data of a cycle
● Special case: square() - i.e. 1.x*1.x ignores cycle 1
● No restrictions for constants or PV/PS.
● Trans shares cycles, but can load multiple

components in a single cycle slot
● And more...

21

r[67]xx: Fetch Units

● Clause is either vertex or texture fetch clause
● Wrong type works on systems w/o vertex cache...

● Up to 6 fetches per clause (more on r7xx?)

● 160 buffers per shader type VS, GS, PS (FS: 16)
● Yes, vertex fetches can be done in PS...

● Buffers set up as either vertex or texture buffers
● 18 sampler units for interpolating textures

● Can be reused → only one per format needed
● Reusing in same clause? Probably not...

22

r[67]xx: Vertex Fetches

● Vertex buffers
● Address (40bit)
● Total size, number of entries
● Defaults for vertex fetch clauses

● Vertex fetch op
● Format (FMT_8_8_8_8, FMT_32_32_FLT, etc.)
● Destination component swizzle (x,y,z,w,0,1,-)
● Scaling (normalize, integer, scaled), sign

Performs int→float conversion
● Endianess
● Offset

● First fetch: Megafetch, indicating #bytes

23

r[67]xx: Texture Fetches

● Textures
● Address, MIP address (?)
● Dimensionality
● Format, tiling mode
● Width/height/depth, pitch
● Swizzling
● MIP levels

● Texture Samplers
● Clamping
● Minifying, magnifying filter (point, linear, cubic)
● MIP filter
● More to be analyzed (anisotropic, etc.)

24

r[67]xx: Texture Fetches (2)

● Texture Fetch op
● Instruction type
● Resource ID (0-160), Sampler ID (0-17)
● Coordinate GPR
● Destination GPR
● Scaling (0-1 w/ repeat+mirroring / 0-size)
● Coordinate swizzling (x,y,z,w,0,1)
● Destination swizzling
● Fixed point offsets, LoD bias

● Instructions partially unclear in docs
● Not only texture fetch, but also derivative + LoD

calculation, weights, etc.
● TEX_INST_SAMPLE_C_G_LB ?!?

25

r[67]xx: Fetch Units Pitfalls

● Scaling doesn't seem to work as indicated
● E.g. Floats work FMT_32_32_32_32_FLOAT
● FMT_16_16 integers scaled in fetch unit work fine
● FMT_32_32 integers don't...
● - fetched as FMT_32_32_FLOAT normalized and converted

in ALU.Trans unit work fine (signed only)
● - fetched as FMT_32_32 work on all except

RV610 and RV620...
● - fetched as FMT_32_32 integers and

converted in ALU.Trans unit show flat shaded triangles
only on RV620, RV670, and RV770...

● - same fetched as FMT_32_32_FLOAT works
on RV620...

● WTF?!?

26

r[67]xx: Interpolator Setup

● Maps GPR output of VS to GPR input of PS
● Input of VS is fixed: GPR0.x has index

● Defines GPR interpolation type
● Flat, linear, perspective correct

27

r[67]xx: Vertex Submission

● No direct vertex submission mode like on r5xx
● Only vertex buffers
● No automatic fetch, explicitly code in VS or FS
● Draw initiation with Type-3 packet

● Indices
● 16 and 32 bit indices
● Automatic numbering, included in Type-3 packet,

or from additional buffer
● Pitfalls

● IT_DRAW_* Type-3 needs correctly associated
VGT_DRAW_INITIATOR, e.g.
IT_DRAW_INDEX_IMMD / DI_SRC_SEL_IMMEDIATE

28

r[67]xx: Fix Function Parts

● Frame + Depth buffers
● Multiple render targets
● Need additional buffers for hierarchical Z
● High performance improvement with tiling

● Much more complex than r5xx
● Possible to map memory regions to CPU with de-tiling

● Clipping
● Tons of possibilities
● OpenGL clipping planes
● Scissors: generic, screen, window, viewport, 4 clip
● Viewport transformation

● Blending, Multisampling etc.
● Theoretically: Care about CPU cache

29

r[67]xx: Cache Coherence

● Complex caching mechanisms with multiple
source and destination caches, no snooping!

● Cache invalidation
● Address ranges, cache types
● Wait for finished draws, flushing, fence notifications

● Source cache flushes
● On vertex buffer + texture uploads, shader changes

● Need to wait for finished draws + flushed cache
● On hardware→software transition
● On binding textures after render to texture
● On glFinish()

● Support for interrupt based pipelined fences
and cache flush notifications

30

r600_demo: Basic Layout

● r600_demo.c
● Opens DRM, binds buffers, parses options, calls tests
● Dead ugly...

● r600_emit.h
● Packet emission, uses api defined in r600_hwapi.h
● Abstraction for later use in DRI driver

● r600_lib.c, r600_lib.h
● Support functions, buffer submission, etc.

● r600_init.c, r600_state.h
● Initialization, subsystem setup, draw initiation

● r600_reg.h
● Register definitions, most autogenerated from docs

● r600_shader.h
● Macros for shader definitions

31

r600_demo: Ringbuffer Handling

● Uses mechanism reserved for X11 driver
● Doesn't work well with X11 acceleration
● Alternative: Direct ring programming

Only on 32bit due to DRM bug
● Irrelevant for tests

● Tests just define when to actually submit buffers
flush_cmds()

32

r600_demo: Command Emission

● Reserve ring space, define variables etc.
CMD_BUFFER_PREAMBLE (dwords)
CMD_BUFFER_ALLOC (dwords)

● Basic macro for emitting a 32bit value to ring
E32 (dword)

● Emit float value
EFLOAT (float)

● Initiate Type-0 / Type-3 packet
EPACK0 (reg, num) / EPACK3 (cmd, num)

● Write single register (Type-0 packet)
EREG (reg, dword) / EREGFLOAT (reg, float)

● Wait for engine finished
EMIT_WAIT_3D_IDLE_CLEAN ()

33

r600_demo: Chip Initialization

● set_default_state ()
● Contains quite some stuff to be moved to DRM
● Contains some magic values for magic registers
● Does extra cleanup if CLEAN_SETUP defined
● Tons of subsystem initialization

34

r600_demo: The Triangle

● What you absolutely need
● Vertex buffer: set_vtx_resource ()
● Vertex shader: vs_setup ()
● Pixel shader: ps_setup ()
● Initialization: start_3d (), set_default_state ()
● Render target: set_render_target ()
● VB, VS, PS uploaded to GPU or GART memory,

cache flushing: upload ()
● Viewport setup or VTX_XY_FMT_bit
● set polygon mode, enable RT0
● Interpolator setup
● Draw: draw_auto ()

● Easiest starting point: r600_texture.c

35

The Future

● DRI driver development
● Currently based on DRI, not DRI2 / gallium / etc.

● Never good to make two radical things at the
same time

● End of last year: Basis for driver
(Software fallbacks only)

● Currently: hello.c from Red Book works with fixed
shaders + buffers

● AMD adds shader compiler
● That means some IP issues have to be solved
● Needs a bit of time

36

The End

Questions ?

	title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

